Microhydro Systems: Advice From The Pros: Page 3 of 6

Beginner
Microhydro Intake
The right intake design will affect system performance greatly.
Microhydro Intake Site
Asian Phoenix’s Power Pal Low-Head Turbine
Asian Phoenix’s Power Pal low-head turbine in Honduras. At lower heads than this, things get tricky.
Altimeter
An altimeter is used to survey elevation. This measurement shows only 180 feet of head, but with a 12-inch pipe, this site will develop 75 kW.
Don Harris
Hydro guru Don Harris.
Measuring Head with the Bucket Method
The “bucket method” can be used to measure flow in small streams. Larger streams require an alternative measurement method.
Measuring Head with a Pressure Gauge
95 psi shows the static head of almost 220 feet of head.
Hugh Piggott, Scoraig Wind Electric
Hugh Piggott, Scoraig Wind Electric
David Seymore, Asian Phoenix Resources
David Seymore, Asian Phoenix Resources
Denis Ledbetter, Lo Power Engineering
Denis Ledbetter, Lo Power Engineering
Christopher Freitas, WiFu Energy
Christopher Freitas, WiFu Energy
Joseph Hartvigsen, Hartvigsen-Hydro
Joseph Hartvigsen, Hartvigsen-Hydro
Scott Davis, Friends of Renewable Energy BC
Scott Davis, Friends of Renewable Energy BC
Excavator Placing Pipe
An excavator lifting a 3,000-pound section of 8-inch steel onto a steep slope. The pipe was then pulled 500 feet up the hill using the excavator and a long steel cable through a pulley.
Microhydro Intake
Microhydro Intake Site
Asian Phoenix’s Power Pal Low-Head Turbine
Altimeter
Don Harris
Measuring Head with the Bucket Method
Measuring Head with a Pressure Gauge
Hugh Piggott, Scoraig Wind Electric
David Seymore, Asian Phoenix Resources
Denis Ledbetter, Lo Power Engineering
Christopher Freitas, WiFu Energy
Joseph Hartvigsen, Hartvigsen-Hydro
Scott Davis, Friends of Renewable Energy BC
Excavator Placing Pipe

Financial feasibility is usually the governing factor. How much is the power worth? Note that transmitting small amounts of energy, such as an energy-efficient household would use, can be pretty inexpensive over long distances. Every site is unique, and careful balancing of factors is required. Ultimately, the maximum feasible distance is directly related to the depth of your checkbook and what is “worth it” to you.

Q: What are the advantages of a microhydro system compared to other renewable electricity systems (wind turbine, PV array)?

A microhydro system will generate continuously, if it has a constant water supply. This alone is a significant advantage over either wind or solar power because a battery bank may not be required, and a smaller battery bank will suffice if one is needed. Also, microhydro is generally less expensive per kilowatt-hour than either wind or solar electricity. It’s working all day, every day. If you had a site where all three systems had equal potential near to the point of use, microhydro would probably be the least expensive choice per delivered watt-hour.

The hydrological cycle follows the human consumption cycle very well where summer cooling is not used. In winter, when a stream usually has more flow, households tend to use more energy; in summer, households use less energy and generally have less water. Solar electricity provides the opposite result, giving the highest yield in the summer, when you typically need less. Hydropower is there when you need it. When the sun goes down and the wind stops blowing, your hydro turbine will continue generating electricity.

Q: What are the limitations of hydro-electric systems compared to other RE systems?

The main limitations of hydro-electric systems are the limitations of the water supply. No water equals no power. Few people have access to a good microhydro site—there are far fewer potential sites than solar and wind sites. And few people who live near good sites are aware of the potential of microhydro. Hydro is for one home in 1,000 at best, so the technology has only a light dusting of installations. These will generally be in rural environments near or in the mountains.

Even though hydropower is comparatively inexpensive and consistent, it requires special conditions that may be hard to come by. First, you need head, which usually means a location close to mountains. Second, it takes the land area to collect the water and develop the head. Third, it requires physical spaces for an intake, penstock, and power house. Fourth, the permitting process can be difficult, because you will be physically altering the watershed, even if only a little.

Q: How do you assess the financial viability of a system, compared to, say, energy produced by a PV system?

A little simple math will answer this question. First, measure your head and flow and apply a formula to determine how much you can generate. Then get price quotes for the intake, penstock, and powerhouse equipment. Add it all up and divide by the lifetime energy you expect to produce, and you will have your cost per kilowatt-hour.

While every site has so many unique elements that generalizing is pretty risky, with an appropriate water supply, a microhydro system is usually many times less expensive than a PV system. Maintaining a microhydro system also can be quite inexpensive. There is just the one moving part, and bearing replacement is required only every few years. The intake can be the only point of regular maintenance, and the system shouldn’t cost anything but labor to maintain. On the other hand, PV arrays that are mounted on fixed racks have no moving parts, or intakes, to maintain.

PV and microhydro systems aren’t always treated equally with various incentives (rebates, tax credits, and net metering may only be available for PV systems), so that may also be a consideration. Financial viability is ultimately a personal assessment of the value of the energy produced for the system owner. 

Comments (3)

Heetel64's picture

If you are lucky enough to have a water source, study it.
An example would be a water source with a bend. Consider putting two independent wheels, smaller one on the outside ( faster flow ) and larger one on the inside with reducer gearing ( slower flow ). Should you find that the water supply is reduced, then design your system to allow for moving the larger wheel into the outer bend.
Never think that your water source will never change.

Frank Heller's picture

For remote sites where the owner has access to enough water to generate 1+ KW; it may be advisable to install microhydro should the distance to the nearest power line be 2 or more poles away. In Maine, a pole typically costs about $9,000.

On the other hand going off the grid is not for the faint hearted.

Frank Heller's picture

Don't dismiss the water wheel so quickly. A large slowly turning water wheel can provide enough torque to power a transmission so that a 300:1 or greater increase in RPM can be obtained. A large wheel with a small amount of water may do the same. Depends on whether it is in the current or powered by the weight of falling water.

There are also large volumes of water impounded in tidal pounds that can power a modern equivalent of the Roman tub turbine. In Maine we have 11' tides and there is an infrastructure of tidal ponds which ran approx. 2,000 tidal water mills.

OREC and others now use variations of the Gorlov turbine in swift underwater ocean currents. Tidal barrages using compression waves can also drive large turbines, i.e. SEABELL of Tokyo.

Show or Hide All Comments

Advertisement

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading